1-4-8 نانو سیم ها………………………………………………………………………………………………………………….18
1-4-9 نانو مواد صفر بعدی……………………………………………………………………………………………………..18
1-4-10 نقاط کوانتومی…………………………………………………………………………………………………………..18
1-4-11 نانو ذرات لپیدی……………………………………………………………………………………………………….19
1-4-12 نانو ذرات پلیمری……………………………………………………………………………………………………..20
1-5 نانو ذرات طلا………………………………………………………………………………………………………………..21
1-6 خواص نوری نانو ذرات طلا…………………………………………………………………………………………….23
1-7 انواع پلاسمون سطحی……………………………………………………………………………………………………..24
1-8 محاسبات کمی خواص نوری نانو ذرات طلا……………………………………………………………………….28
1-9 پارامترهای موثر در طراحی نانو ذرات مغناطیسی………………………………………………………………….32
1-9-1 موانع فیزیولوژیکی……………………………………………………………………………………………………….32
1-9-2 پارامترهای فیزیکی……………………………………………………………………………………………………….34
1-9-3 اندازه هیدرودینامیک……………………………………………………………………………………………………34
1-10 مزایایی پوشش دار کردن سطح نانو ذرات………………………………………………………………………….36
1-11 موانع در کاربردهای پزشکی…………………………………………………………………………………………….37
1-12 نتیجه گیری……………………………………………………………………………………………………………………38
فصل دوم………………………………………………………………………………………………………….40
2-1 سیستامین…………………………………………………………………………………………………………………………41
2-2 فاموتیدین………………………………………………………………………………………………………………………..42
2-3 مروری بر کارهای انجام گرفته……………………………………………………………………………………………42
2-3-1 توموگرافی محاسبه شده اشعه ایکس……………………………………………………………………………….48
2-3-2 حسی زیستی……………………………………………………………………………………………………………….50
2-4 مطالعه سمیت نانو ذرات مغناطیسی…………………………………………………………………………………….52
فصل سوم………………………………………………………………………………………………………………………………55

3-1 واکنشگر ها……………………………………………………………………………………………………………………..56
3-2 تهییه محول ها………………………………………………………………………………………………………………….57
3-3 دستگاه ها………………………………………………………………………………………………………………………..57
3-4 روش تولید نانو ذره آهن…………………………………………………………………………………………………..58
3-5 روش پوشش دهی نانو ذره آهن با طلا………………………………………………………………………………..60
3-6 در مجاورت قرار دادن سیستامین و نانو ذره…………………………………………………………………………61
3-7 روش محاسبه غلظت تقریبی نانو ذرات طلا…………………………………………………………………………61
فصل چهارم……………………………………………………………………………………………………………………………62
4-1 مقدمه…………………………………………………………………………………………………………………………….63
4-2 طیف FT-IR از نانو ذره آهن……………………………………………………………………………………………64
4-3 تائید پوشش دهی نانو ذره آهن با طلا…………………………………………………………………………………65
4-4 قرار دادن نانو ذره آهن پوشش داده شده با طلا در مجاورت سیستامین……………………………………66
4-5 تعیین زمان بهینه جذب……………………………………………………………………………………………………..66
4-5-1 تعیین زمان بهینه جذب 0.1 مولار سیستامین……………………………………………………………………66
4-5-2 تعیین زمان بهینه جذب 0.5 مولار سیستامین…………………………………………………………………..67
4-5-3 تعیین زمان بهینه جذب 0.05 مولار سیستامین………………………………………………………………….68
4-6 تعیین غلظت بهینه جذب …………………………………………………………………………………………………69
4-7 تعیین pH بهینه جذب…………………………………………………………………………………………………….70
4-8 بررسی نتایج زمان بهینه جذب……………………………………………………………………………………………71
4-9 بررسی نتایج غلظت بهینه جذب…………………………………………………………………………………………75
4-10 بررسی نتایج pH بهینه جذب…………………………………………………………………………………………..76
فهرست شکلها صفحه
شکل 1-1 استفاده ار ذرات مغناطیسی………………………………………………………………………………………….4
شکل 1-2 نانو سیم ها در استیل داماسکوس……………………………………………………………………………….6
شکل 1-3 وجود رنگ قرمز و سبز در جام لیکورگوس………………………………………………………………..7
شکل 1-4 اندازه نسبی نانو ذرات در مقیاس نانو…………………………………………………………………………9
شکل 1-5 شکلهای مختلف نانو ذرات……………………………………………………………………………………….10
شکل 1-6 ساختار مواد سوپر پارامغناطیس………………………………………………………………………………….12
شکل 1-7 اثر میدان خارجی بر ذرات مغناطیسی………………………………………………………………………..13
شکل 1-8 نمونه های از نانو ذرات فلزی…………………………………………………………………………………..14
شکل 1-9 نوسان طولی و عرضی الکترونها در نانو میله های فلزی………………………………………………..17
شکل 1-10 پیک جذبی مرئی فرابنفش نانو میله های طلا با نسبت ابعادی مختلف…………………………………………………………………………………………………………………………………..17
شکل 1-11 نانو ذرات کوانتومی بر پایه ی مواد نیمه رسانا…………………………………………………………..19
شکل 1-12 نانو ذرات لپیدی…………………………………………………………………………………………………..19
شکل 1-13 نانو ذرات پلیمری………………………………………………………………………………………………..21
شکل 1-14 نانو ذرات طلا سنتز شده با سیترات……………………………………………………………………….23
شکل 1-15 شمایی از پلاسمون سطحی انتشار…………………………………………………………………………….25
شکل 1-16 طیف جذبی نانو ذرات کروی طلا………………………………………………………………………….26
شکل 1-17 بر همکنش میدان الکتریکی اشعه الکترومغناطیس……………………………………………………..27
شکل 1-18 اثرات پراکندگی و جذب در مجموعه ای از نانو ذرات………………………………………………28
شکل 1-19 طیف خاموشی محاسبه شده بوسلیه تئوری می…………………………………………………………30
شکل 1-20 پیک های جذب برای نانو ذرات کروی طلا……………………………………………………………..31
شکل 2-1 ساختار شیمیایی اولتراویست…………………………………………………………………………………..49
شکل2-2 میزان مقاله های منتشر شده در مباحث سمیت نانو ساختارها……………………………………….54
شکل3-1 سنتز نانو ذره آهن……………………………………………………………………………………………………..59
شکل 3-2 نانو ذره آهن پوشش داده شده با طلا………………………………………………………………………….60
شکل 4-1 طیف جذبی مربوط به سیستامین 0.1 مولار………………………………………………………………….67
شکل4-2 طیف جذبی مربوط به سیستامین0.5 مولار…………………………………………………………………..68
شکل 4-3 طیف جذبی مربوط به سیستامین0.05 مولار………………………………………………………………..69
شکل 4-4 مقایسه pH های بهینه جذب…………………………………………………………………………………..71
شکل 4-5 pH بهینه……………………………………………………………………………………………………………..71
فهرست نمودارها صفحه
نمودار 3-1 طیف جذبی UV-Vis از نانو ذره آهن پوشش داده شده با طلا………………………………..65
نمودار 4-2 مقایسه زمان بهینه غلظت 0.1 مولار سیستامین در λmax ……………………………………………………………………….72
نمودار 4-3 مقایسه زمان بهینه غلظت 0.5 مولار سیستامین در λmax………………………………………………72
نمودار 4-4 مقایسه زمان بهینه غلظت 0.05 مولار سیستامین در λmax…………………………………………….74
نمودار 5-4 مقایسه غلظت های بهینه سیستامین در مدت 60 دقیقه در λmax……………………………………75
فهرست جداول صفحه
جدول 1-4 غلظت 0.1 مولار از سیستامین……………………………………………………………………………….72
جدول 2 -4 غلظت 0.5 مولار از سیستامین……………………………………………………………………………….73
جدول 3 -4 غلظت 0.05 مولار از سیستامین……………………………………………………………………………..74
جدول 4-4 مقایسه غلظتهای سیستامین ذر زمان 60 دقیقه…………………………………………………………….75
فصل اول
مقدمه
مقدمه:
نانو تکنولوژی، علم نانو، ساختار نانو، ذرات نانو اکنون کلماتی هستند که بیشترین کاربرد را در ادبیات علمی دارند. موادی با ابعاد نانو بسیار جذاب هستند چرا که آنها قادر به عبور از بدن انسان و ترمیم بافت های آسیب دیده می باشند، یا سوپر کامپیوترها که آنقدر کوچک هستند که در جیب جای می گیرند، با اینهمه مواد با ساختار نانو توانایی و پتانسیل کار در بسیاری از حوزه های علوم را دارند مثل شناسایی بیولوژیکی، انتقال داروی کنترل شده، لیزر با آستانه پایین، فیلترهای نوری و همچنین نانو سنسورها و غیره[1,3]. نانو ذرات ذراتی هستند با محدوده اندازه‌ی 1 تا 100 نانومتر. دراین جا نوع فلزی نانوذرات به ویژه نوع مغناطیسی آن بیشتر مد نظر بوده که نانوذرات ترکیبی، نظیر ساختارهای هسته ‌لایه را نیز در بر می‌گیرند. نانوذرات در اندازه‌های پایین نانوخوشه به حساب می‌آیند.
نانوذرات مغناطیسی در حوضه‌های مختلف از علوم زیستی گرفته تا سلول‌های خورشیدی، از مبارزه با آلاینده‌های زیست‌ محیطی گرفته تا درمان سرطان‌ها بکار گرفته می‌شوند. با توجه به هم‌خوانی که بین سه پدیده‌ی نانو، مغناطیس و بیو وجود دارد کاربرد نانوذرات مغناطیسی در عرصه‌ی بیو و پزشکی بیش از سایر حوضه‌ها مهیج و در عین حال هم‌گون می‌باشد. استفاده از ذرات مغناطیسی در جداسازی سلول‌ها، آزمایش‌های سنجش ایمنی1، جداسازی ویروس‌ها و اندامک‌ها و نیز در ژنتیک مولکولی در چند سال اخیر مسیر رو به رشدی را داشته است. چراکه ذراتی با ویژگی‌های مورد نیاز برای ارزیابی‌های گوناگون زیستی تنها در چند سال پیش پا به عرصه‌ی رقابت گذاشته‌اند. ذرات مغناطیسی پلی‌مری ابتدایی از طریق شکل گیری درجایِ اکسیدآهن مغناطیسی درون ذرات پلی‌مری منفذ دار ساخته می‌شدند که در عین هم انداز‌گی تا حدود 35 درصد وزنی، حاوی آهن (اکسید مغناطیسی) بودند، و سطح ویژه‌ی بالایی نیز داشتند(ml/g100-50.) اما در برخی کاربردها نیاز به سطح ویژه‌ی کمتری است. با پوشش دادن ذرات مغناطیسی به وسیله‌ی ترکیبات پلیمری می‌توان سطح ویژه‌ را تا حد ml/g5-3 کاهش داد. علاوه بر این، پوشش دادن ذرات این امکان را فراهم می‌کند تا گروه‌های فعال روی سطح ذرات قرار گیرند. انواع گوناگون ذرات مغناطیسی با گروه‌هایی همچون: ایزوسیانات، اپوکسی، وینیل و… در سطحشان ساخته شده است. گروه‌های فعال برای اتصال بازوبندهای رابط4 دارای گروه‌های آمین، کربوکسیل و هیدروکسیل انتهایی به کار گرفته می‌شوند. همچنین با روش مشابهی می‌توان گروه‌های آبدوست قوی با منشاء طبیعی و یا مصنوعی را روی سطح ذرات قرار داد. با استفاده از عامل‌دار نمودن نانوذرات مغناطیسی در عرصه‌ی تشخیص گام‌های بلندی برداشته شده است. می‌توان نانوذرات مغناطیسی را بسته به نوع نیاز تغییر داد؛ به عنوان مثال، خصوصیت شیمیایی ویژه، فعالیت نوری منحصربه‌فرد و یا پاسخ‌های آهن‌ربایی قوی از آن‌ها دریافت کرد. امروزه نانوذرات مختلفی برای شناسایی مواد ژنتیکی و پروتئین‌ها طراحی شده است. تمامی این روش‌ها برای شناساییDNA و پروتئین‌ها نظیر آنتی‌بادی‌ها بسیار اختصاصی و حساس می‌باشند. بنابراین با بکارگیری نانوذرات فعال شده، می‌توان روش‌های جدیدی با تکیه بر متحرک بودن و سهولت در آماده سازی نمونه طراحی نمود. با اتصال مولکول‌های زیستی به نانومواد، دانش Nano-biorecognition پا به عرصه‌ی وجود گذاشت. هر نانوذره با اندازه‌ای حدود 100 نانومتر می‌تواند به طور مؤثری به 200-150 مولکول آنتی‌بادی متصل شود و در نهایت بیش از 300 جایگاه فعال (دو جایگاه برای هر ملکول آنتی‌‌ژن) ایجاد نماید. پوشاندن نانوذرات با بیوملکول‌ها باعث ایجاد اتصالات چندتایی بین نانوذرات و سلول‌های هدف می‌شود، بنابراین نانوذرات فعال شده نسبت به بیوملکول‌های آزاد دارای تمایل بیشتری برای اتصال هستند. نانوذرات مغناطیسی بطور گسترده‌ای در تشخیص بیماری‌ها مورد استفاده قرار می‌گیرد، باتوجه به اینکه بیماری‌ها در سطح سلولی و مولکولی می‌توانند تشخیص داده شوند. بنابراین خیلی از بیماری‌ها را می‌توان در مراحل ابتدائی تشخیص داد و این مورد بویژه در مورد بیماری‌های کشنده نظیر سرطان‌ها، حائز اهمیت است در اوخر دهه‌ی1970 محققان پیشنهاد استفــاده از حامل‌های مغناطیسی برای هدایت دارو به سمت هدف مورد نـظر در درون بدن را ارائه دادنداستفاده پزشکی از پودرهای مغناطیسی به دوران یونان باستان و روم برمیگردد، ولی به شکل اصولی و تحقیقاتی از سال ١٩٧٠ در علوم بیولوژی و پزشکی استفاده شد وپیش بینی می شود این ذرات در آینده نقش چشمگیری در رفع احتیاجات حیطه سلامت بشریت خواهند داشت. نانو ذرات مغناطیسی با تکیه بر فناوری نانو محدوده گسترده ای از کاربردهای تشخیصی و درمانی در بیماری هایی از جمله سرطان،بیماری های قلبی و عصبی را تسهیل کرده اند. نانوذرات مغناطیسی به فراوانی در تحویل هدفمند عوامل درمانی استفاده می شود وبر اساس هدف یابی دارویی مغناطیسی (MDT2) که شامل تمایل قوی بین لیگاند و گیرنده می باشدیا ازطریق جذب مغناطیسی بافت خاص عمل می کنند. نانو ذرات مغناطیسی به سبب امکان کنترل از راه دورعوامل درمانی در انتقال ذرات به بافت مورد نظر بسیار قابل توجه هستند، وبه همین سبب آنها را حامل های هدفمند مغناطیسی می نامند(MTC 3).
شکل 1-1 استفاده از ذرات مغناطیسی در دارو رسانی (ابتدا ذرات متصل به دارو مورد نظر در نزدیکی بافت مورد نظر تزریق می گردد.سپس با استفاده از یک آهن ربا ذرات در بافت مورد نظر متمرکز می شوند تا اینکه بیشترین تاثیر در بافت ایجاد گردد
اتصال دارو به ذرات مغناطیسی می‌تواند باعث کاهش دز مصرفی دارو و نیز کاهش هزینه‌های مصرف و همچنین تا حدود زیادی منجر به کاهش اثرات شدید جانبی داروها گردد. در بهترین حالت، دارو باید به سطح و یا توده‌ی ذرات مغناطیسی متصل گردد. اندازه، بار و شیمی سطح ذرات تا حدودی بر جریان خون و دسترسی زیستی4 آن‌ها در درون بدن تاثیر دارد. در مجموع می‌توان چنین بیان کرد که ویژگی‌های مغناطیسی و کاربردی ذرات به شدت وابسته به اندازه‌ی ذرات مغناطیسی و قدرت میدان مغناطیسی احاطه کننده‌ی بافت مورد نظر می‌باشد. همچنین برخی پارامترهای هیدرودینامیک همچون آهنگ جریان خون، غلظت ذرات و مسیر تزریق نیز حائز اهمیت است. تاکنون مطالعات محدودی در رابطه با انتقال دارو در بدن انسان صورت گرفته است. به عنوان مثال تحقیق کلینیکی انجام گرفته توسط Lubbe نشان می‌دهد که تزریق ذرات مغناطیسی در مورد 14 بیمار نتایج خوبی در بر داشته است. این بررسی مجوز خوبی برای استفاده‌های کلینیکی از این ذرات می‌باشد. اگرچه هنوز محدودیت‌های زیادی همچون امکان گرفتن رگ‌های خونی به علت تجمع ذرات مغناطیسی، مشکلات مواجه در رابطه با ارسال دارو به بافت‌های عمیق برای دارو رسانی مغناطیسی وجود دارد، اما محققان باور دارند که این موانع روزی برطرف خواهد شد و ذرات مغناطیسی به عنوان یک ابزار مرسوم در درمان سرطان مورد استفاده قرار خواهد گرفت.
در واقع نانو ذرات فلزی مدتهاست بکار میروند مثل استیل داماسکوس که برای ساخت شمشیر و یا کاپ لیکارگوس که رنگ منحصر بفردی دارد[3,5]. اگر چه، ذرات نانو مدتهاست بکار رفته اند، اما مشخص نیست که مقیاس ذرات نانو چقدر بوده است. احتمالا این یک روش تصادفی برای تولید ذرات نانو بوده است.
شکل1- 2 نانو سیم ها در استیل داماسکوس
شمشیر یا تیغ ساخته شده از استیل داماسکوس5 حدود 500 سال پس از میلاد مسیح ساخته شد[6]، این شمشیر به این دلیل مشهور شد که:
خیلی قوی
تیز
انعطاف پذیر
زیبا بود.
افسانه جالبی در مورد شمشیر وجود دارد که این شمشیر می تواند صخره ها را تمیز ببرد و هنوز انقدر تیز باشد تا بتواند یک روسری ابریشمی را روی هوا به دو نیم کند.بسیاری از دانشمندان سعی دارند این خواص خاص را بر ملا کنند و با لوله های نانو کربنی چند جداره در استیل مواجهند.
ذرات نانو(1-200 نانو متر) خواص کاتالیست، نوری و الکترونی دارد. خواص آن نیز به روش چگونگی آمادگی ذرات نانو برای کنترل اندازه و شکل ذرات نانو مربوط می شود که بلوک های ساختمانی مهیجی را برا ی دستگاه ها، ساختار و وسایل با مقیاس نانو ارائه می دهد. مینیاتور سازی ساختارها با روش های مکانیکی و لیتوگرافی شعاع الکترونی به محدودیت های تئوری حدود 50nm رسید.
کاپ مشهور گلاس لیکورگوس6‏ مربوط به زمان های رنسانس (قرن چهارم بعد از میلاد) حاوی ذرات نانوی طلا و نقره به نسبت تقریبی3 :7 است که قطری حدود 70 نانومتر دارد.وجود ذرات نانو ذرات فلزی رنگ خاصی به نقاشی این لیوان می دهد، وقتی در نور منعکس شده مشاهده می شود برای مثال در نور خورشید سبز بنظر می رسد.این لیوان هنوز در موزه بریتانیا مشاهده می شود.
شکل 1-3 وجود رنگ قرمز و سبز در جام لیکورگوس به علت وجود نانو ذرات طلا و نقره در شبکه بلوری شیشه
نانوفناوری :
در فرهنگ واژه شناسی علم و فن‌آوری پیشوند نانو به معنای 000،000،1000/1 واحد می‌باشد، مثلاً nm 1 به معنای یک میلیاردم متر یا 9-10×1متر می‌باشد، مقیاس نانومتر یک مفهوم سه بعدی طبیعی برای مولکول‌ها و اثرات آن‌ها می‌باشد. در نانوفناوری ما با اشیاء یا موضوعات در مقیاس نانو سرو کار داریم. باید توجه داشت که خواص و عملکرد اشیاء در مقیاس نانو با چیزی که در ابعاد معمولی و بزرگتر وجود دارد، به مقدار قابل توجهی متفاوت می‌باشد. در گویش عمومی بحث علوم نانو، خواص مواد در مقیاس اتمی، ملکولی و ماکروملکولی را مورد بحث و بررسی قرار می‌دهد. در بحث صنعت نانو ما با طراحی، ساخت و بکارگیری تجهیزات، سامانه‌های با کنترل دشوار7و اندازه‌ی آن‌ها در مقیاس نانو سروکار داریم. ذرات نانو در رشته های گونانون مهم هستند، آنها در کل می توانند بصورت دو موضوع طبقه بندی شوند یعنی مهندسی شده و غیر مهندسی شده. نانو ذرات مهندسی شده عمدا با خواص فیزیکی ساخته شده طراحی و ایجاد می شوند تا نیاز کاربرد های خاص را برآورده کنند. آنها می توانند محصول را به خودی خود به پایان برسانند مثل در حالت نقاط کوانتومی، سنسور برای اهداف خاص یا آنها می توانند بخشی باشند که در محصولات نهایی جدا مانند کربن سیاه در محصولات لاستیکی گنجانده می شوند. در هر روشی خواص فیزیکی ذره برای عملکرد آنها یا کار محصولی که آنها در آن گنجانده می شوند خیلی مهم می باشند. از طرف دیگر، نانو ذرات مهندسی نشده بصورت غیر عمدی نانو ذرات تولید نشده می باشند مثل نانو ذرات اتمسفری ایجاد شده در طول احتراق. با نانو ذرات مهندسی نشده، خواص فیزیکی نیز نقش مهمی بازی می کنند بطوریکه آنها تعیین می کنند آیا تاثیر منفی در نتیجه وجود این ذرات روی می دهد یا نمی دهد
ذرات مغناطیسی مواد فاز جامد پاسخ دهنده به مغناطیس هستند که می توانند به شکل نانوذره منفرد یا تجمعی از ذرات میکرو و نانو باشند.هر کدام از انواع نانوذرات در زمینه خاصی استفاده می شوند.ترکیب،سایز و مسیر سنتز نانو ذرات مغناطیسی با توجه به نوع کاربری آنها متفاوت است اما ذرات سوپر پارامغناطیس، فرو و فری برای انواع کاربردهای دارورسانی قابل استفاده هستند. اینگونه مواد به دلیل گشتاور مغناطیسی واحد شبکه و ساختار دمین ها شدیدا از میدان مغناطیسی خارجی متاثر می شوندبه نحوی که در غیاب میدان مغناطیسی خارجی به صورت یک ذره غیر فعال عمل می کنند.
تک دمین بودن و سوپرپارامغناطیسی ازویژگی های نانوذرات مغناطیسی هستند که منشا بسیاری از خواص منحصر به فردشان می باشد. مطمئناً درک و کنترل خواصمغناطیسی نانوذرات، مکانیسم خواص ‏مغناطیسی مواد و طراحی و کنترل آن را روشن خواهدساخت. نانوذرات مغناطیسی، به دلیل کاهش ‏حوزه‌های مغناطیسی و در نتیجه ایجاد خاصیتسوپر پارامغناطیس آینده‌ی درخشانی دارند.
شکل 1-4 اندازه نسبی ذرات در مقیاس نانو در مقایسه با مولکول های دیگر
1-3 نانو ذرات :
نانوفناوری با توجه به اینکه بیشتر با ابعاد و شاخصه‌های مواد در ابعاد ریز بستگی دارد، این قابلیت را داراست، که در حوزه‌های مختلف علم و فناوری تاثیر گذار باشد. این پدیده به سرعت جایگاه خود را در تحقیق و توسعه باز کرده و تمامی زوایای مرز دانش و فناوری را تحت الشعاع خود قرارداده است. دامنه‌ی آن، از مواد و انرژی گرفته تا اطلاعات و ارتباطات، از اتم گرفته تا فضای لایتناهی را در بر می‌گیرد. نانوفناوری قبل از اینکه یک علم بین رشته باشد، بیشتر یک هنر یا صنعت ترکیبی است. با توجه به این مطلب نانوتکنولوژیست‌ها با ترکیب روش‌های مختلف ماکرو و میکروئی و بردن آن‌ها به ابعاد نانو خلاقیت‌های بسیاری را به کاربرده‌اند.
شکل 1-5 شکل های مختلف نانو ذرات که تا کنون شناخته شده اند

طبقه بندی نانو ذرات :
متدوال ترین نانو ذرات شامل نانو ذرات نیمه رسانا، سرامیکی، پلیمری و فلزی می باشند. بسیاری از سنتزهای ذرات نانوی کلوئیدی شناخته شده اند اما کار های انجام شده اخیر به سنتز ذرات نانو مخصوصا برای ساخت دستگاه ها و ساختارهای نانو اختصاص می یابد. این ذرات ممکن است شامل یک ماده خاص در یک اندازه خاص باشد یا اساسا سطح مشخصی داشته باشند. داشتن چند درجه کنترل بر شکل ذرات نانو ممکن است.پایداری ذرات نانو نیز یک نکته است، اقدامات احتیاطی خاص باید برای جلوگیری از انباشتگی یا رسوب آنها اتخاذ گردد. به علت اینکه در این تحقیق نانو ذرات فلزی مورد استفاده قرار گرفتند، بر روی این نانو ذرات به طور خاص تمرکز بیشتری می کنیم.
1-4-1 سوپر پارا مغناطیس:

در این سایت فقط تکه هایی از این مطلب(به صورت کاملا تصادفی و به صورت نمونه) با شماره بندی انتهای صفحه درج می شود که ممکن است هنگام انتقال از فایل ورد به داخل سایت کلمات به هم بریزد یا شکل ها درج نشود-این مطالب صرفا برای دمو می باشد

ولی برای دانلود فایل اصلی با فرمت ورد حاوی تمامی قسمت ها با منابع کامل

اینجا کلیک کنید

خواص سوپر ‏پارامغناطیس نانو ذرات مستقیماً تحت تاثیر آنیزوتروپی مغناطیسی نانوذرات است.‏ هنگامی که ممان مغناطیسی نانو ذرات در جهت محور آسان بلور است، مقدار انرژی آنیزوتروپی ‏مغناطیسی (EA‏) کمینه می‌شود. در نانوذرات مغناطیسی کروی، آنیزوتروپی بلور مغناطیسی برابر باآنیزوتروپی ‏مغناطیسی کل است. این آنیزوتروپی به عنوان سدی برای تغییر جهت مغناطیسیاست. هنگامی که ‏اندازه نانوذرات تا حد آستانه‌ایی کاهش می‌یابد،‏EA‏ برابر با انرژی فعال‌سازی ‏گرمایی ‏‎(KBT)‎‏ می‌شود. با وجود سد انرژی آنیزوتروپی کوچک، جهت مغناطیسی نانوذرات به راحتی ‏توسط انرژی فعال‌سازی گرمایی ویا میدان مغناطیسی خارجی تغییر می‌کند. اگر انرژی گرمایی بیشتر ‏از ‏EA‏ باشد، تمام جهات و ممان مغناطیسی در جهات کاتوره‌ایی قرار می‌گیرند. اساساً رفتار کلی‏نانوذرات مغناطیسی مانند اتم‌های سوپر پارامغناطیس است. اگرچه نانوذرات هنوز خاصیتمغناطیسی ‏کمی دارند هر ذره مانند یک اتم پارامغناطیس عمل می‌کند، اما ممان مغناطیسی بزرگی دارد. چنین ‏رفتاری، سوپر پارامغناطیس نامیده می‌شود(شکل1-6). در ماده‌ی سوپر پارامغناطیس، جهت مغناطیسی نانوذرات به ‏جای جهت خاصی، سریعاً در حال تغییراست. دمایی که سد انرژی آنیزوتروپی مغناطیسی نانوذرات ‏همیشه بر اثرژی فعال سازی گرمایی غلبه می‌کند، دمای بلوکه نامیده می‌شود.
شکل1-6 ساختار مواد سوپر پارامغناطیس
1-4-2 نانو ذرات فلزی :
در سال 1857 مایکل فارادی8 اولین مطالعات اصولی را در زمینه سنتز و رنگ کلوئیدی طلا انجام داد[5]. او متوجه شد که رنگ قرمز نانو ذرات طلا به خاطر اندازه کوچک آنها می باشد، زیرا بر هم کنش این ذرات با نور در مقایس نانو با توده طلا متفاوت می باشد. اگر چه کارهای او بیشتر جنبه کیفی داشتند اما راه را برای بررسی بیشتر نانو ذرات فلزی و کاربردهای گسترده آن ها همواره نمود. از آن زمان هزاران مقاله علمی در زمینه سنتز، اصلاح9 بررسی خواص و تجمع نانو ذرات فلزی منتشر شده است که بسیاری از خواص فیزیکی و شیمیایی این ذرات که توجیه کننده ویژگی های رفتاری آنهاست را بیان میکند. امروزه نانو ذرات فلزی به طور گسترده در بیوشیمی، کاتالیز واکنش ها، حسگرهای زیستی و شیمیایی و در سیستم های نانو الکترونیک مورد استفاده قرار می گیرند [6,8]. .نانو ذرات حاصل از فلزات اصلی دیگر نیز ممکن است با احیاءآماده شوند مثل ذرات نقره حاصل ازAgNo3، پلادیوم حاصل از H2[PdCl4] و پلادیوم حاصل از H2[PtCl6]. [26,27] این شباهت ها در آماده سازی این کلوئید های فلزی مختلف، سنتز ذرات فلزی مخلوط شده را ممکن می سازد که امکان دارد اساسا با هر فلز دیگری فرق داشته باشد[29]. برای مثال، احیا یا کاهش ترکیبات نمک های فلزی اصلی می تواند منجر به تشکیل آلیاژ یا ذرات ریز مخلوط شود. جالب تر اینکه، ذرات مرکب می تواند در پوسته با سنتز یک هسته کلوئیدی کوچک بعد از بزرگ شدن آن با یک فلز متفات ساخته شود کلوئید طلا می تواند با نقره پوشیده شود. نانو ذرات فلزی با پوسته های مختلف مثل، گرافیت غیر فلزی، رسانا یا نیمه رساناCds پوشیده می شود.
ذرات مغناطیسی تحت یک میدان مغناطیسی خارجی می چرخند و به منظور جابجایی ذرات در یک جهت خاص از فضا باید از یک میدان ناهمگن استفاده شود.اثر نیروی مغناطیسی بر روی این ذرات در یک سوسپانسیون مایع با مغناطش ذرات،چگالی جریان مغناطیسی و گرادیان میدان مغناطیسی متناسب است.
شکل 1-7 اثر میدان خارجی بر ذرات مغناطیسی
خواص نوری نانو ذرات فلزی نظیر طلا و نقره بسیار قابل توجیه می باشد، که همین امر استفاده از آنها را در طول دهه گذشته افزایش داده است تحقیقات نشان می دهد تغییر رنگ این ذرات از تغییر در ترکیب، اندازه و شکل آنها ناشی می شود که در قسمت های بعدی درباره منشآ این رنگ به طور مفصل بحث خواهیم کرد.
شکل 1-8 نمونه هایی از نانو ذرات فلزی با شکل و اندازه مختلف، شکل سمت چپ تصاویر میکروسکوپ الکترونی عبوری10 نانو ذرات طلا کروی و میله ای (a,b) و نانو منشورهای نقره (c) و شکل سمت راست محلول کلوئیدی نانو ذرات آلیاژ طلا و نقره با افزایش غلظت طلا(d) نانو میله های طلا با افزایش نسبت ابعادی11 و نانو منشورهای نقره با افزایش اندازه جانبی را نشان می دهد[9]
1-4- 3 نانو مواد سه‌بعدی :
درخت‌سان‌ها
درخت‌سان‌ها مولکول‌هایی بزرگ و پیچیده‌اند، که ساختار شیمیایی کاملاً تعریف‌ شد‌ه‌ای دارند. از نقطه نظر شیمی درخت‌سان‌ها ماکرومولکول‌های نسبتاً کامل و یکنواختی (هم‌اندازه و هم‌شکل) هستند که دارای معماری سه‌بعدی منظم و به‌شدت شاخه‌شاخه می‌باشند. آن‌ها از سه بخش اصلی هسته، شاخه‌ها و گروه‌های انتهایی تشکیل شده‌اند. روش‌های ساخت آن‌ها بطور کلی به دو روش واگرا و هم‌گرا می‌باشد. به دلیل پیشرفت‌های اخیر در شیمی سنتزی و روش‌های تعیین مشخصات، توسعه سریع این نوع جدید از پلیمر‌ها ممکن شده است و ساخت انواع چارچوب‌های درخت‌سانی با ابعاد نانومتری تعریف ‌شده (3 تا 5 نانومتر برای نسل‌های بالا) و تعداد گروه‌های عاملی انتهایی مشخص عملی شده است. وگنل2، اولین مثال از یک روال سنتزی تکراری برای خلق ساختار‌های شاخه‌ای کاملاً تعریف ‌شده را در سال 1978 گزارش کرد. او این روال را «سنتز آبشاری» نامید. در اوایل سال‌ 1980 دنکوالتر سنتز درخت‌سان‌های مبتنی بر ال- لیزین را ثبت نمود. این اختراع ساختارهایی را تا پیچیدگی نسل‌های بالا معرفی می‌کرد. اولین ساختار‌های درخت- ‌وار‌ه‌ای که کاملاً مورد بررسی قرار گرفته، توجه زیادی را به خود جلب کرد و اخیراً کاربردهایی در پزشکی و دارورسانی برای آن‌ها مشخص شده است.
1-4-4 نانومواد دو بعدی:
غشاء‌های نازک
در دنیای کنونی تغییرات سطحی به یک فرایند مهم و اساسی تبدیل شده است. در این مورد روش‌هایی شامل ایجاد لایه‌های نازک یا پوشش‌ها بر روی سطوح است و این کار افزایش کارآیی و محافظت سطوح را به دنبال دارد. رسوب یک لایه نازک (نانولایه) برای پوشش‌ دهی در اکثر صنایع جایگاه مهمی برای خود یافته است. نانولایه‌ها دارای یک ساختار نانو ذره‌ای می‌باشند که این ساختار یا از توزیع نانوذرات در لایه ایجاد می‌شود و یا به وسیله یک فرایند کنترل شده، در حین رسوب ایجاد می‌گردد. فیلم‌های نانویی لایه نازک، که بر روی سطح یک زیر پایه نشانده می‌شوند کاربردهای عمدتاً الکترونیکی دارند. همانند زیرلایه‌ها، خازن‌ها، قطعات حافظه، آشکارسازهای مادون قرمز و راهنماهای موجی.
1-4-5 نانو مواد تک بعدی :
چنانچه مواد را در یک بعد به مقیاس نانو در بیاورند ساختارهای تک‌ بعدی نانو خواهیم داشت، که خود قابل تقسیم بندی به گروه‌های زیرند.
1-4-6 نانولوله‌ها:
لفظ نانولوله در حالت عادی در مورد نانولوله‌های کربنی به کار می‌رود، هر چند که اشکال دیگری از نانولوله همچون انواع ساخته شده از نیترید بور یا حتی نانولوله‌های خودآرای آلی نیز وجود دارد. نانولوله‌ها با خواص مکانیکی، الکتریکی و اپتیکی برجسته، در مصارف الکترونیکی با بیشترین توجه روبه‌رو شده‌اند. همچنین نانولوله‌ها برای نگهداری هیدروژن و هیدروکربن‌ها جهت استفاده در پیل‌های سوختی نیز مورد مطالعه قرار گرفته‌اند. نانولوله‌ها نیز به دو گروه تک‌دیواره و چند‌ دیواره قابل تقسیم‌اند[20,21] .
1-4-7 نانومیله‌های طلا12:
در نانوفناوری نانو میله‌ها قطعاتی هستند با ابعاد یک تا صد نانومتر که در بسیاری موارد آن‌ها را با نانوسیم‌ها و یا نانولوله‌ها یکسان درنظر گرفته و مرز مشخصی برای آن‌ها قایل نمی‌شوند. نانو ذرات طلا میله ای شکل دو قله پلاسمونی دارند. یکی که حدود 530 نانو متر است پلاسمون تقاطعی 13 است و مربوط به ارتعاش الکترون ها اطراف محور کوچکتر میله است. دیگری که پیک قوی تری است و در طول موج بالاتری ایجاد می شود پلاسمون طولی 14 است و مربوط به ارتعاش الکترون ها اطراف محور طولی نانو میله ها است.(شکل 1-9 ). محل این پیک با تغییر اندازه ذره تغییر می کند (شکل 1-4).
شکل 1-9 نوسان طولی و عرضی الکترون ها در نانو میله های فلزی
شکل 1-10 پیک جذبی مرئی فرا بنفش نانو میله های طلا با نسبت ابعادی مختلف[27]
1-4- 8 نانوسیم‌ها:
سیم به ساختاری گفته می‌شود که در جهت طولی گسترش ابعاد یافته و در دو بعد دیگر کاملاً محدود شده باشد سیم‌های نانو دارای ویژگی رسانش الکتریکی و امکان اعمال اختلاف پتانسیل می‌باشند که آن‌ها را برای کاربردهای الکتریکی و سنجش زیستی بسیار مناسب ساخته است. مثال‌هایی از کاربرد نانوسیم‌ها عبارتند از: وسایل مغناطیسی، حسگرهای شیمیایی و بیولوژیکی، نشانگرهای بیولوژیکی و اتصالات داخلی در نانوالکترونیک مانند اتصال دو قطعه‌ی ابر رسانای آلومینیومی که توسط نانوسیم نقره صورت می‌گیرد.
1-4-9 نانومواد صفر بعدی:

شما می توانید تکه های دیگری از این مطلب را با جستجو در همین سایت بخوانید

نانوذرات یا نانومواد صفربعدی به گروهی از مواد نانوئی اتلاق می‌گردد که ابعاد آن‌ها در هر سه بعد نانوئی شده است. که خود مشتمل بر گروهای زیر می‌باشند.
1-4-10 نقاط کوانتومی:
نقاط کوانتومی یا نانوکریستال‌ها در دسته‌ی نیمه‌رساناها جای می‌گیرند. نیمه‌‌رساناها اساس صنایع الکترونیک جدید هستند و در ابزارهایی مانند دیودهای نوری و رایانه‌های خانگی به کار گرفته می‌شوند. اهمیت نیمه‌رساناها در این است که رسانایی الکتریکی این مواد را می‌توان با محرک‌های خارجی مانند میدان الکتریکی یا تابش نور تغییر داد، تا حدی که از نارسانا به رسانا تبدیل شوند و مانند یک کلید عمل کنند. این خاصیت، نیمه‌رساناها را به یکی از اجزای حیاتی انواع مدارهای الکتریکی و ابزارهای نوری تبدیل کرده است. نقاط کوانتومی، به خاطر کوچک بودنشان، دسته‌ی منحصربه‌فردی از نیمه‌رساناها به شمار می‌روند. پهنای آن‌ها، بین 2 تا 10نانومتر، یعنی معادل کنار هم قرار گرفتن 10 تا 50 اتم است. در این ابعاد کوچک، مواد رفتار متفاوتی دارند و این رفتار متفاوت قابلیت‌های بی‌سابقه‌ای در کاربردهای علمی و فنی به نقاط کوانتومی می‌بخشد.
شکل 1-11 نانو ذرات کوانتومی بر پایه مواد نیمه رسانا
1-4-11 نانوذرات لیپیدی:
نانو ذراتی هستند از جنس لیپید یا همان لیپوزوم در ابعاد نانو که در پزشکی و زیست‌شناسی جایگاه ویژه‌ای دارند
شکل 1-12 نانو ذرات لیپیدی
1-4-12 نانوذرات پلیمری:
این نانوذرات از مونومرهای آلی تشکیل شده که پس از فرآوری، پلیمریزه شده و شکل خاصی را به خود می‌گیرند مانند کیتوسان‌ها که کاربرد زیادی در زیست‌شناسی نوین دارد. نانو ذرات پلیمری زیست سازگار معمولا شامل پلی لاکتیک اسید و یک کوپلیمر پلی اتیلن گلیکول و پلی لاکتیک اسید می باشند که برای انتقال پروتئین ها، ژن ها، واکسن ها و علی الخصوص داروهای ضد سرطان مورد بررسی قرار گرفته اند. در دهه های گذشته، برای آماده سازی نانو ذرات پلیمری، روشهای زیادی مثل بخار حلال ارائه گردیده است. سطح استخوان طبیعی اغلب حاوی پهنای 100 نانومتر است. اگر سطح یک پیوند استخوانی ساخته شده خیلی صاف باشد، بدن سعی می کند آن را رد کند، بنابراین تولید یک بافت فیبری پوشاننده سطح پیوند برای رفع مشکل صاف بودن سطح موثر است. این لایه باریک تمامی پیوند استخوانی را که ممکن است موجب سست شدن پیوند و تورم شود را کاهش می دهد. مشخصات با اندازه نانو می تواند به گرفتن سطح صاف کمک کند. این موضوع در تهیه پروتزهای لگن و زانو که از ذراتی با اندازه نانو بکار رفته است، استفاده شده که شانس پس زدن را همراه با تحریک تولید استئوبلاست ها15 را کاهش می دهد. استئوبلاست ها سلولهایی هستند که مسئول رشد شبکه استخوان است و در سطح پیشرفته استخوان در حال رشد شبکه استخوان است و در سطح پیشرفته استخوان در حال رشد مشاهده می شود. این اثر با مواد فلزی، سرامیکی و پلیمری نشان داده می شود. بیشتر از 90 درصد سلول های استحوانی انسان حاصل از سوسپانسیون یا تعلیق به سطح فلز غیر مهندسی شده هستنند. استفاده از اندازه های نو، طراحی یک زانو و لگن جایگزین پایدارتر و مقاوم تر را ممکن می سازد و شانس سست شدن و یا پس زدن پیوند را کاهش می دهد. اما کاربرد این تکنیک ها با مشکلات گوناگونی که وجود دارد تا حدود زیادی محدود شده است. این مشکلات شامل کار با حلال های سمی، بازدهی کم نانو ذرات تشکیل شده و یا بعضی از نمکهای باقی مانده از لحاظ بیولوژیکی، سازگار نیستند می باشد.

دسته بندی : پایان نامه

پاسخ دهید